Zero Carbon Transport, Smart Cities, and Built Environments Research Centre

Working with public sector organisations, large and small businesses, consultants, and national and international research partners, The Zero Carbon Transport, Smart Cities and Built Environments Research Centre is helping to develop simulation tools and sustainable design techniques.

As well as meeting new building industry regulations, these tools and techniques are contributing more widely to efforts to reduce CO2 emissions, address climate change and meet health and safety requirements. Our research is also helping to develop sustainable materials to address issues such as overheating in care homes.

The work of our researchers is reaching a global audience through a variety of academic publications, including: Physica, Energy and Buildings, Energy Conversion and Management, Sustainable Cities and Society, Tunnelling and Underground Space Technology, and the International Journal of Rock Mechanics and Mining Sciences. 

Our aims

About 50% of the annual energy consumption on Earth is attributed to the operation of buildings to maintain a high quality of human living standards. Designing environmentally friendly and healthy structures is, generally, based in bioclimatic technologies used by engineers, people, authorities and investors.

There is significant demand for innovative research in sustainable design and engineering in order to decarbonise cities, improve human living, meet regulations and develop smart-city applications.

The focus of our Transport, Smart Cities and Built Environments Research Centre is to approach the new future city in a ‘state of the art' way. We deal with present global and local challenges in the construction industry in terms of zero carbon, regulations, climate change strategy and smart city concept.

The established Centre in the College of Science and Engineering deals in the most efficient way with innovative solutions in the Civil Engineering, Construction and Architectural Technology sectors. 

Our research

Building and urban bioclimatic design

Our researchers are investigating how buildings interact with the surrounding environment and respond to large and small changes in the climate. Using advanced planning, interior design techniques and sustainable architecture practices such as biophilic design (including nature in the design), we can address issues such as overheating, energy demand and human health and safety. 

Structural design and technology

Research into concrete healing technologies and quantitative surveying techniques is enabling us to provide solutions that will protect our land from flooding and reduce earthwork defects. This will enable the development of construction management approaches that are both environmentally friendly and financially viable.

Future and smart cities

We are using sustainable engineering principles to develop applications and technologies that will improve quality of life and reduce carbon emissions. Using advanced software, data gathering and analysis techniques, we can assess scenario-based solutions to develop the best smart designs.

Quantity surveying and commercial management

The University has invested in advanced quantity surveying technology to improve the teaching experience and high-level research. Doctoral students and academic staff are able to use high-level surveying technologies to accommodate PhD courses and consultancy. Quantity surveyors also study and investigate the financial, legal, managerial and economic aspects of project and commercial management, providing key advice on costs and contracts.

Join us

If you would like to find out more about the research in this area, join the research cluster or are applying for a PhD in this area, please contact Dr Omar Hamza for more information.

Publications

  • Cui, Y, Zhu, J., Zoras, S., Hassan, K. and Tong, H. 2022. Photovoltaic/Thermal Module Integrated with Nano-Enhanced Phase Change Material: A Numerical Analysis. Energies. 15 (14), p. 4988. https://doi.org/10.3390/en15144988
  • Soleimani, Zohreh, Zoras, Stamatis, Ceranic, Boris, Cui, yuanlong and Shahzad, Sally 2021. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106325
  • Cui, yuanlong, Zhu, Jie, Zoras, Stamatis and Liu, Lin 2021. Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2021.111345
  • Soleimani, Zohreh, Zoras, Stamatis, Ceranic, Boris, Shahzad, Sally and Cui, Yuanlong 2021. The cradle to gate life-cycle assessment of thermoelectric materials: A comparison of inorganic, organic and hybrid types. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2021.101073
  • Cui, Yuanlong, Zhu, Jie, Zoras, Stamatis and Zhang, Jizhe 2020. Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2020.110254
  • Cui, Yuanlong, Zhu, Jie, Zoras, Stamatis, Qiao, Yaning and Zhang, Xin 2020. Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system. Energy. https://doi.org/10.1016/j.energy.2020.118108
  • Soleimani, Zohreh, Zoras, Stamatis, Ceranic, Boris, Cui, Yuanlong and Shahzad, Sally 2020. Optimization of a wearable thermoelectric generator encapsulated in polydimethylsiloxane (PDMS): A numerical modelling. IEEE. https://doi.org/10.1109/REPE48501.2019.9025156
  • Soleimani, Zohreh, Zoras, Stamatis, Cui, Yuanlong, Ceranic, Boris and Shahzad, Salome 2020. Design of heat sinks for wearable thermoelectric generators to power personal heating garments: A numerical study. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/410/1/012096
  • Cui, Yuanlong, Jie, Zhu, Meng, Fanran and Zoras, Stamatis 2019. Energy assessment and economic sensitivity analysis of a grid-connected photovoltaic system. Renewable Energy. https://doi.org/10.1016/j.renene.2019.12.127
  • Solemaini, Zohreh, Zoras, Stamatis, Ceranic, Boris, Shahzad, Sally and Cui, YUANLONG 2019. A review on recent developments of thermoelectric materials for room-temperature applications. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2019.100604
  • Cui, Yuanlong, Zhu, Jie, Stamatis, Zoras, Chen, Xiangjie, Bi, Haixia, Qiao, Yaning and Soleimani, Zohreh 2019. State-of-the-art review of 3DPV technology: structures and models. Energy Conversion and Management. 200, p. 112130. https://doi.org/10.1016/j.enconman.2019.112130
  • Soleimani, Zohreh, Zoras, Stamatis, Cui, Yuanlong, Ceranic, Boris and Shahzad, Sally 2019. Design of heat sinks for wearable thermoelectric generators to power personal heating garments: A numerical study. IOP Conference Series: Earth and Environmental Science.
  • Cui, Yuanlong, Jie, Zhu, Ssennoga, Twaha, Junze, Chu, Hongyu, Bai, Xiangjie, Chen, Stamatis, Zoras and Zohreh, Soleimani 2019. Techno-economic assessment of the horizontal geothermal heat pump systems: A comprehensive review. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.04.018
  • Karakounos, Ioannis, Dimoudi, Argyro and Zoras, Stamatis 2017. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2017.11.035
  • Mytafides, Christos K., Dimoudi, Argyro and Zoras, Stamatis 2017. Transformation of a university building into a zero energy building in Mediterranean climate. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2017.07.083
  • Zoras, Stamatis, Veranoudis, Sotiris and Dimoudi, Argyro 2017. Micro- climate adaptation of whole building energy simulation in large complexes. Energy and Buildings. https://doi.org/10.1016/j.enbuild.2017.05.060
  • Tsakmakis, Ioannis, Kokkos, Nikolaos, Pisinaras, Vassilios, Papaevangelou, Vasiliki, Hatzigiannakis, Evangelos, Arampatzis, George, Gikas, Georgios, D., Linker, Raphael, Zoras, Stamatis, Evagelopoulos, Vasilis, Tsihrintzis, Vassilios, A., Battilani, Adriano and Sylaios, Georgios 2016. Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models. Water Resources Management. https://doi.org/10.1007/s11269-016-1548-7
  • Zoras, Stamatis, Dimoudi, Argyro, Evagelopoulos, Vasilis, Lyssoudis, Spyros, Dimoudi, Sofia, Tamiolaki, Anna-Maria, Stathis, Vasilis, Polyzakis, Apostolos and Deligiorgi, Euterpi 2015. Bioclimatic rehabilitation of an open market place by a computational fluid dynamics simulation assessment. Future Cities and Environment. https://doi.org/10.1186/s40984-015-0009-4
  • Kantzioura, Athena, Kosmopoulos, Panos, Dimoudi, Argyro and Zoras, Stamatis 2015. Experimental investigation of microclimatic conditions in relation to the built environment in a central urban area in Thessaloniki (Northern Greece): A case study. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2015.03.006
  • Georgakis, Chrissa, Zoras, Stamatis and Santamouris, Matheos 2014. Studying the effect of “cool” coatings in street urban canyons and its potential as a heat island mitigation technique. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2014.04.002
  • Dimoudi, Argyro, Zoras, Stamatis, Kantzioura, A., Stogiannou, X., Kosmopoulos, Panagiotis and Pallas, C. 2014. Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2014.04.003
  • Zoras, Stamatis, Tsermentselis, Antonios, Kosmopoulos, Panagiotis and Dimoudi, Argyro 2014. Evaluation of the application of cool materials in urban spaces: A case study in the center of Florina. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2014.01.007
  • Zoras, Stamatis 2013. Urban environment thermal improvement by the bioclimatic simulation of a populated open urban space in Greece. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2013.829787